
ORNL/TM-2018/817

Exploring Flexible Communications for
Streamlining DNN Ensemble Training
Pipelines

Randall Pittman
Xipeng Shen
Robert M. Patton
Seung-Hwan Lim

Mar 28, 2018

Approved for public release.
Distribution is unlimited.

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of Energy
(DOE) SciTech Connect.

Website: http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public
from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: 703-605-6000 (1-800-553-6847)
TDD: 703-487-4639
Fax: 703-605-6900
E-mail: info@ntis.gov
Website: http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Ex-
change representatives, and International Nuclear Information System representatives from the
following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone: 865-576-8401
Fax: 865-576-5728
E-mail: report@osti.gov
Website: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal lia-
bility or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or repre-
sents that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.

 http://www.osti.gov/scitech/
mailto:info@ntis.gov
http://classic.ntis.gov/
mailto:reports@osti.gov
http://www.osti.gov/contact.html

ORNL/TM-2018/817

Computer Science and Mathematics Division

Exploring Flexible Communications for Streamlining DNN Ensemble Training Pipelines

Randall Pittman1, Xipeng Shen2, Robert M. Patton, Seung-Hwan Lim

Date Submitted: Mar, 2018

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283
managed by

UT-Battelle, LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

1North Carolina State University, rbpittma@ncsu.edu
2North Carolina State University, xshen5@ncsu.edu

CONTENTS

LIST OF FIGURES . v
LIST OF TABLES . vii
ACKNOWLEDGMENTS . ix
ABSTRACT . xi
1. Introduction . 1
2. Backgrounds . 3

2.1 Deep Neural Network Training Pipeline . 3
2.2 Heterogeneous GPU-CPU cluster for DNN training pipeline 4

3. Ensemble Performance . 4
3.1 Duplicated Pipelines and the Implementation . 4
3.2 Settings for Testing . 5

3.2.1 Workloads . 5
3.2.2 Datasets . 5

3.3 Baseline . 5
3.3.1 Single Node . 7
3.3.2 Multiple Nodes . 8

4. Optimized Pipelines . 9
4.1 Problem statement . 9
4.2 Horovod groups . 10
4.3 All-Shared . 10
4.4 Single-Broadcast . 11
4.5 Multi-Broadcast . 11

5. Methods . 13
5.1 Peak Preprocessor Throughput . 13
5.2 CPU Usage . 13
5.3 Core Usage Limits . 14
5.4 Energy Usage . 14

6. Results . 18
6.1 Peak Throughput . 18
6.2 CPU . 18
6.3 Energy Consumption . 19

7. Related Work . 21
8. Conclusion . 21
APPENDIX A. Artifact Description . A-3

iii

LIST OF FIGURES

1 Illustration of the inference stage of a DNN ensemble of size 3 for an image of a sailboat. . 1
2 A typical pipeline for DNN training. 3
3 For the default single pipeline, the preprocessing queue is always full, while the compute

queue empties quickly. Thus the preprocessing task is the bottleneck. 6
4 Default single pipeline core utilization for each of the 16 cores on a single Titan node when

training Alexnet. The average core utilization over the entire graph is 94.3%. When the
startup phase is excluded, the average is 96.0%. 6

5 Duplicated pipelines that can be used to concurrently train DNNs. 8
6 Visualization of the MPI all-gather collective. 10
7 Illustration of the All-Shared (AS) pipeline. The dataset D is divided into n partitions for

each reader. 11
8 Illustration of the Single-Broadcast (SB) pipeline. The dataset D is divided into p partitions

for each reader instead of n, since there are now p readers feeding their own preprocessor. . . 12
9 Illustration of the Multi-Broadcast (MB) pipeline. Similar to the Single-Broadcast design,

the dataset is divided into p partitions. Each Di for 1 ≤ i ≤ p is broadcasted to all nodes
with the i’th preprocessor node as the root. 12

10 Illustration of peak(n) for each pipeline. The number of preprocessors is changed between
5 and 20 when supported by the pipeline. The horizontal lines indicate the measured
compute demand of a GPU on Titan. 15

11 CPU usage for SB and MB on Alexnet normalized to the CPU usage for AS. 16
12 CPU usage reduction for the All-Shared pipeline compared to the baseline. Each network/n

combination was trained over 1000 steps. 16
13 Runtime improvement of AS over the baseline when CPU-core limits are imposed. The

ensemble contained 100 networks, each trained over 1000 steps. 17
14 Power draw comparison between AS and the baseline running 80 nodes of Alexnet. 20

v

LIST OF TABLES

1 Statistics comparing the total run time for 50 solo runs and a parallel run of 1000 nodes for
2000 Alexnet steps. 8

2 Average core usage when using simulated 3 core allocation on a Titan node. 14
3 Slowdowns under a 1-core limitation, measured relative to the 16-core performance of the

same DNN and pipeline. 19
4 The minimum energy usage for one of Titan’s metered cabinets, averaged over 45 minutes

of idle time with 1-second interval sampling. 19
5 Average energy consumption during training for each of AS and the baseline on Alexnet,

Inception, and VGG. 20

vii

ACKNOWLEDGMENTS

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.

ix

ABSTRACT

Parallel training of a Deep Neural Network (DNN) ensemble on a cluster of nodes is a common practice to
train multiple models in order to construct a model with a higher prediction accuracy. Existing ensemble
training pipelines can perform a great deal of redundant operations, resulting in unnecessary CPU usage, or
even poor pipeline performance. In order to remove these redundancies, we need pipelines with more
communication flexibility than existing DNN frameworks can provide. This project investigates a series of
designs to improve pipeline flexibility and adaptivity, while also increasing performance. We implement our
designs using Tensorflow with Horovod, and test it using several large DNNs in a large scale GPU cluster,
Titan supercomputer at Oak Ridge National Lab. Our results show that the CPU time spent during training is
reduced by 2-11X. Furthermore, our implementation can achieve up to 10X speedups when CPU core limits
are imposed. Our best pipeline also reduces the average power draw of the ensemble training process by
5-16% when compared to the baseline.

xi

DNN 1 DNN 2 DNN 3

ship sailboat sailboat

sailboat

Figure 1. Illustration of the inference stage of a DNN ensemble of size 3 for an image of a sailboat.

1. Introduction

Machine learning enables the discovery of actionable knowledge from large quantities of data. In the training
of machine learning models, including Deep Neural Networks (DNNs), machine learning algorithms process
a few samples of data in each training iteration for multiple iterations to cover the entire data set until
convergence [13]. As machine learning techniques evolve, more advanced usages have appeared such as the
ensemble of machine learning models [13, 17], where different models learn from the same data set and
aggregate their prediction results to produce a more accurate final prediction, as demonstrated in Figure 1.
Such ensemble training multiplies the I/O and CPU demand on an already burdened system, since it
duplicates model training pipeline across different nodes.

The DNN training pipeline is an iterative process that consists of reading, preprocessing, and
computing/training stages. Data is first read from a storage system, then prepared for training using the CPU,
and lastly is sent to the GPU for DNN training. A common implementation of an ensemble training pipeline
is constructed by duplicating this pipeline onto multiple machines to train models in parallel. Such a simple
parallelization scheme inherently creates redundancies, particularly for the preprocessing stage.

Since each DNN model is trained over the same data, the preprocessing operations (e.g., resizing and
cropping) being performed for each DNN are redundant. This stage can be CPU-intensive depending on the
type of operations being performed, the dataset being used, and the DNN model to be trained. The result is
unnecessarily high CPU usage for every compute node in the ensemble training, slowing-down the DNN
training time. It is because the rate of preprocessing on the CPU side cannot keep up with the demand from
the GPU to train a model over prepared data. In addition, the excessive CPU usage is likely to increase the
power consumption of the ensemble training.

The difficulty in resolving these redundant operations is the lack of flexibility in model training pipelines.

1

Since most present frameworks (e.g. TensorFlow, Caffe, and Torch) focus on training a single model, they do
not provide sufficient flexibility to allow pipelines to fit the demands of parallel ensemble training in
distributed environments. The overarching goal of the research direction presented here is to add flexibility
into existing DNN frameworks to enable customizable communications in parallel ensemble training, and
further to identify the communication schemes that best suite DNN ensemble training in both training time
and power consumption.

In this study, we analyze a series of queues used to buffer data between each stage in the machine learning
pipeline, allowing us to isolate potential bottlenecks. We discover a bottleneck in the preprocessing stage that
can hinder DNN training speed. To add flexibility to present frameworks, we develop a group-based
collective communication addition to the Horovod [21] library. Using this addition with Tensorflow, we
examine three pipeline designs that we refer to as All-Shared, Single-Broadcast, and Multi-Broadcast.

The All-Shared pipeline shares the preprocessing step across all members in the ensemble, whereas
Single-Broadcast and Multi-Broadcast share within a subset of the ensemble. Single-Broadcast elects a
leader to broadcast the preprocessed data to other nodes, while Multi-Broadcast performs asynchronous
broadcasts from multiple nodes. We examine these three cases as an initial study of different primitive
pipeline communication schemes.

Among these pipelines, the All-Shared scheme provides significantly more efficient parallel ensemble
training. Our experimental results show that the preprocessing stage can indeed form a bottleneck for the
Alexnet DNN, producing 96% CPU usage with 34% degraded training time on Titan supercomputer, a large
scale GPU cluster at Oak Ridge National Lab. Our best optimized pipeline can meet and exceed Alexnet’s
preprocessing demand by up to 2X. We furthermore reduce CPU usage by 2-11X depending on the DNN
being trained. Lastly, we provide experimental results on Titan showing that our best pipeline uses 5-16%
less energy during training.

In summary, we present the following key contributions:

1. To our best knowledge, this is the first work that systematically characterizes performance issues
present in parallel DNN ensemble training in large distributed environments. (Section 3.)

2. It adds into existing DNN ensemble training pipelines with flexible communication controls. (Section
4.)

3. It provides the first known exploration of distributed communication schemes for streamlining parallel
ensemble training pipelines in large distributed environments. (Section 4.)

4. It offers a thorough performance analysis of the capabilities of these pipelines on the Titan
supercomputer. (Section 6.)

We will first introduce DNN pipelines, showing how they can be extended for ensemble training. After
seeing the shortcomings of more simplistic designs, we will present our alternative pipelines. Lastly, we will
provide detailed experiments to show the benefits our optimizations yield.

2

Preprocessing
Queue

IO device

Preprocessing

Compute
Queue

 GPU

Figure 2. A typical pipeline for DNN training.

2. Backgrounds

2.1 Deep Neural Network Training Pipeline

A typical deep neural network training pipeline contains three stages: reading the data from storage systems,
preprocessing the data, and training the model (see Figure 2). Data is first read into a queue, and is then run
through various transformations known as preprocessing. Afterwards, the data is queued again and arranged
into batches. The batch size is the number of data the network trains simultaneously per step. When training
DNNs, it is important not to overfit to a particular dataset. Preprocessing typically helps with this goal by
modifying input data to be more generic.

Many expensive data preprocessing operations are performed on a point by point basis. For example, image
preprocessing allows us to flip, rotate, blur, and resize images to allow for more general cases than what is
being provided by the dataset. While this increases the computational complexity of the input pipeline, it also
increases the generality of the final DNN. Many other preprocessing techniques exist for other datatypes, not
exclusively images. Both audio [8] and sensor [12] data have a wide range of preprocessing techniques that
can be applied.

Preprocessing techniques can further be divided into online and offline preprocessing. In the offline case,
preprocessed data is saved to storage, then loaded directly into the pipeline when training begins. On the
other hand, online preprocessing techniques are used every time the dataset is loaded. Online is particularly
useful when randomized preprocessing techniques are used. Images may be flipped, rotated, or cropped in
random ways, allowing a single image to provide a vast array of possible inputs to a DNN. Online
preprocessing is the method commonly used in DNN training as its dynamic nature makes it more effective

3

in preventing overfitting a dataset, allowing much more general applications for the network. In modern
implementations of DNN training, online preprocessing typically serves as one stage in the training pipeline;
the pipeline structure helps hide its runtime overhead.

2.2 Heterogeneous GPU-CPU cluster for DNN training pipeline

The modern high performance computing cluster has evolved into a hybrid architecture that houses CPUs
and GPUs on each node in order to handle other computationally heavy workloads with high energy
efficiency [6, 22, 25]. One of the most prominent large-scale examples of such an architecture is the Titan
supercomputer located at Oak Ridge National Laboratory. Each of Titan’s 18,688 nodes features both a
16-Core AMD CPU and a K20X Nvidia GPU [1]. The next supercomputer that will soon be replacing Titan
is called Summit, which is anticipated to be ready for researchers in 2018. Summit will contain 2 IBM
Power9 CPUs and 6 Nvidia Volta GPUs [2]. With this level of computing power, researchers can use each
node to either train larger networks, or train smaller networks faster using techniques such as batch
parallelism.

Heterogeneous GPU-CPU clusters are particularly well suited towards DNN training, since the CPU and
GPU can work together to accelerate the training pipeline. In heterogeneous GPU-CPU clusters, the GPU is
generally given the training task and the CPU is in charge of reading and preprocessing data into batches that
the GPU can quickly use, ideally with as little idle time as possible. Such a division of pipeline steps is
largely to achieve maximal training throughput on the GPU, since GPUs are generally able to process
machine learning kernels to train DNN models with a higher throughput than multi-core CPUs [10]. To
achieve maximal training throughput, it is generally best to preserve cache and memory states on the GPU. If
the GPU were to attempt preprocessing as well as training, the CPU would need to perform additional copies
to GPU memory depending on how well the fusion of the preprocessing and training stages is performed.
Furthermore, extra memory would need to be allocated on the GPU for the preprocessing stage, which
constricts the maximum batch size that can be used on a large network. The general goal is to make the
GPU’s training stage as efficient as possible, while the preprocessing on the CPU side attempts to saturate
GPU resources.

3. Ensemble Performance

In this section we discuss the scheme of the typical DNN ensemble training pipelines used in existing work.
We refer to such pipelines as the duplicated pipelines scheme, and provide a Tensorflow implementation that
is used to test and analyze its performance. We later use this implementation as a baseline against which
other schemes may be compared.

3.1 Duplicated Pipelines and the Implementation

DNN ensemble training consists of the training of a number of DNN variants. These variants are independent
from one another. The scheme commonly used in existing work, duplicated pipeline scheme, launches N
duplicated pipelines with each running on one (or more) nodes training one DNN variant in the ensemble.

We implement the scheme based on Tensorflow. We use the Slim module [5] as a starting point, since it

All Tensorflow code is version 1.3.0.

4

includes the implementations of several popular networks, such as Inception, Alexnet, and VGG.
Furthermore, Slim provides a robust set of preprocessing operations by default for the Imagenet dataset,
which proved quite useful for our tests. In our experiments, each DNN runs on one Titan node.

3.2 Settings for Testing

We describe the settings used in our performance testing of various ensemble training schemes as follows.
Some of these choices are designed to draw out problems of interest that may arise from an ensemble of
DNNs.

3.2.1 Workloads

In general, parallel model training can be used as a fast method for hyper-parameter tuning [23], or it can be
used to create multiple learners for increased classification accuracy, or to learn an ensemble model [13, 17].
An ensemble model is most effective when each DNN serves a useful and probably unique testing purpose,
and has been modified appropriately to suit that purpose. As discussed earlier, the final result is intended to
be more diverse than any single classifier could be. Towards this goal, our study investigates the system
efficiency of parallel ensemble training.

The more complicated case arises when the differences between each DNN are substantial enough to cause
significant changes in performance. For example, each model may contain varying numbers of hidden layers
or different numbers of nodes within each layer. Since the number of layers in a network is a primary factor
influencing training time [13], such changes could cause significant differences in training times between the
members of the ensemble. While this area may be an interesting point for a future optimization study,
managing the burst computational requirements from many concurrent model training pipelines poses the
most urgent problem. In light of this, our experiments focus on the DNN variants in an ensemble that are of
the same structure but differ in their learning rates, initial filter values, or other non-structural parameters.

3.2.2 Datasets

When considering the effects of preprocessing, computation, IO usage, network traffic, etc., it is reasonable to
require that the input dataset dimension and the number of elements be large. Smaller datasets such as
MNIST or Cifar-10 will likely require very little resources and will train quickly. The primary dataset used
for this research is a subset of ImageNet [20], where the entire dataset contains over 14 million images of
size 224 × 224. With this dataset it is much easier to investigate the performance effects of DNN ensembles.
For a given dataset, we also expect that every image will need to be processed by every DNN in an ensemble.

3.3 Baseline

In this section we provide data that characterizes the performance of individual DNNs, as well as DNN
ensembles.

Both datasets contain 60000 images. MNIST images have size 28 × 28, and Cifar-10 images have size 32 × 32
Our subset contains approximately 1.3 million images.

5

0 200 400 600 800 1000
training step

0

20

40

60

80

100
%

 f
ul

l
 to-preprocessing queue
 compute queue

Figure 3. For the default single pipeline, the preprocessing queue is always full, while
the compute queue empties quickly. Thus the preprocessing task is the bottleneck.

0 100 200 300 400 500

time (sec)

0

20

40

60

80

100

%
 C

or
e

U
til

iz
at

io
n

Figure 4. Default single pipeline core utilization for each of the 16 cores on a single
Titan node when training Alexnet. The average core utilization over the entire graph
is 94.3%. When the startup phase is excluded, the average is 96.0%.

6

3.3.1 Single Node

We begin with a performance evaluation of the default pipeline shown in Figure 2 on a single node. Since the
primary goal of the pipeline is to saturate the GPU with prepared data, we present a scenario in which the
GPU can process data quickly. We use Alexnet for this purpose since it is a smaller network that uses a large
batch size of 128 [14].

Since preprocessing occurs on the CPU, it is important to allow parallelism over all CPU cores. Multi-core
execution can drastically speed up preprocessing, and can sometimes utilize all CPU resources for the task.
The DNN computation is affected little by the high CPU usage since it executes on the GPU. Tensorflow
allows such CPU parallelism by default, but in our case we needed to manually change the number of
parallelism threads. We set inter_op_parallelism_threads and intra_op_parallelism_threads to 16 in order to
maximize the usability of the 16-core CPUs available on each Titan node. The former enables parallelism
between multiple operations, while the latter parallelizes individual operations if supported. We also needed
to set a flag when launching the Titan job that enabled multi-core usage for each node.

Since Tensorflow training requires that the graph be constructed symbolically, and is only executed within an
API session call, it is difficult to obtain direct performance diagnostics at runtime. Thus we use Tensorboard
summaries on the various queue sizes in the pipeline to determine where bottlenecks might be occurring.
Since the operation that saves summaries in Tensorflow can affect training performance, we save summaries
every 20 steps and disable certain costly summary operations, such as preprocessed image viewing. We run
Alexnet for 1000 steps on the ImageNet dataset, then analyze the relevant queues in Tensorboard.

Figure 3 shows the measured size of the preprocessing and compute queues during the training process. As
shown before in Figure 2, the preprocessing queue is the data that is about to be preprocessed, and the
compute queue is the preprocessed data being fed to the DNN. In this case, the preprocessing queue fills up
quickly enough that the summary data for this queue reports that it is always full. On the other hand, the
compute queue fills up during the startup phase, then empties out in the first few hundred steps. In
Tensorflow, the first step of the training process is typically many times slower than the rest. This is primarily
due to various initialization and optimization routines that are being executed at runtime. The result is that
the batch queue has time to fill while the first step is executing, but cannot keep up after the first step. The
bottleneck in this case is therefore the preprocessing stage.

It is important to show that the preprocessing uses the entire CPU. Figure 4 shows the utilization level for
each of the 16 cores in our default single pipeline test. Once Tensorflow has finished initializing, we see the
utilization reach peak levels and remain there. The average measured utilization for this test was 96.0% after
startup. From these series of tests, we conclude that a heavy preprocessing load with a smaller DNN is
capable of shifting the bottleneck from the model training to the preprocessing. More computationally
intense models (e.g., GoogleNet with Inception modules) can also create similar issues on newer hardwares
like NVIDIA V100 with TensorCore technology, where processing rate for deep learning workloads is 90
times improved [18].

Titan jobs are executed using the aprun command. Passing the number of allowed threads using the option -d allows multiple
cores to be used by a single task. We used -d16 to enable all cores to be used for each Tensorflow session.

Tensorboard is a diagnostic tool designed to parse and display summary data produced during a Tensorflow training session.

7

Node 1 Node 2

IO device

Node n

Figure 5. Duplicated pipelines that can be used to concurrently train DNNs.

3.3.2 Multiple Nodes

The natural extension to the single pipeline in Figure 2 is to duplicate each pipeline for each DNN in an
ensemble. This duplicated pipeline is shown in Figure 5. In theory, each DNN could be an arbitrary network,
but our present tests use the same network for the sake of analyzing optimization potential.

We first note two main concerns arising from the duplicated pipeline. First, each node reads its own copy of
the dataset, which is highly redundant and places unnecessary strain on the storage systems. High IO usage
could in theory lead to scalability problems. Second, the preprocessing operations are redundant since the
same data is being modified. While this does not present scalability problems, it does result in unnecessary
CPU usage. As shown earlier in Figure 4, the CPU usage could actually be quite high. This presents some
opportunities for pipeline optimization.

In order to test potential scalability issues, we perform a test of the duplication pipeline on 1000 nodes of
Titan and compare overall training time to that of nodes run individually. Table 1 shows the results of
executing 2000 steps of Alexnet on 1000 nodes of Titan in parallel, as well as the results of executing 50
nodes individually. While the 1000 nodes exhibited slightly higher variance in its runtimes, the overall

Unless the file-system uses caches and each node is reading data from the same files in such a way that the cache scores
successive hits.

Table 1. Statistics comparing the total run time for 50 solo runs and a parallel run of 1000 nodes for
2000 Alexnet steps.

Avg Std Dev Min Max

Solo 1132.3 1.429 1129.7 1134.5

Parallel 1132.2 1.962 1125.0 1139.0

8

runtime was not affected. This demonstrates that the storage systems in Titan did not suffer performance
issues caused by the high number of data requests.

4. Optimized Pipelines

Keeping in mind the issues with the duplicated pipeline discussed in the previous section, we establish three
objectives for designing pipelines to increase system efficiency:

1. Eliminate pipeline redundancies through data sharing.

2. Enable sharing by increasing pipeline flexibility.

3. Use increased flexibility to accelerate the pipeline.

Towards these goals, we focus on balancing the computational demand for preprocessing and model training.
Fortunately, ensemble training provides access to more CPU power for the same data, thereby yielding an
opportunity to accelerate the preprocessing stage.

4.1 Problem statement

Let n be the total number of DNNs being trained. Since each DNN uses a single compute node, n is also the
number of nodes being used for the ensemble training. Let p be the number of nodes performing
preprocessing operations, where p ≤ n. Suppose the i’th preprocessor produces a data-block Di. When
designing a new pipeline, the goal is to have every node contain D = [D1,D2, ...,Dp] after the
communication stage. Note that for simplicity of notation, D refers to the dataset at any stage of the pipeline,
either before or after being preprocessed.

Given a particular DNN and hardware system, let rc be the GPU’s compute throughput, and let rp be the
CPU’s preprocessing throughput. Both can be measured in units of images/second. In order to achieve
maximum training speed, we need rp ≥ rc. However, this may not be the case, as we have already shown
with Alexnet on Titan. A solution to this challenge is to share preprocessing steps across n machines for each
data partition, which can raise the throughput of preprocessing up to nrp ≥ rc.

Taking this approach, the number of machines, n needed to satisfy nrp ≥ rc was relatively small for our test
cases. For example, our tests revealed that n = 2 is theoretically sufficient to saturate Alexnet’s compute rate.
If more advanced preprocessing techniques are used to enhance model training, the computational
requirements on the CPU will increase and may require larger n to satisfy the condition.

In practice, nrp is only an upper bound on the possible preprocessing rate. After the data has been prepared,
it must be shared over the cluster’s network to each training node. Therefore, the peak preprocessing
throughput for each node becomes a function of n, say peak(n) ≤ nrp. As n increases, the upper limits of
peak(n) depend on the communication pattern among nodes for preprocessing and the network capabilities of
the cluster. To address this issue, we need to consider flexible pipeline designs in order to accelerate the
progress of the pipeline. Later on, we will show detailed empirical results in this regard.

In the remainder of this section, we introduce our method for improving pipeline flexibility, and further
explore different communication patterns as alternatives to the baseline of the duplicated pipelines.

9

1

2

3

1 2 3

1 2 3

1 2 3

Figure 6. Visualization of the MPI all-gather collective.

4.2 Horovod groups

Horovod [21] is a distributed deep-learning library for Tensorflow. Although distributed Tensorflow [3]
provides implicit tensor sends and receives, it does not provide collective operations. Horovod fills the gap by
supporting collective operations, including all-gather, broadcast, and all-reduce. Thus, it allows tensor
objects to be sent through MPI collectives.

However, one limitation in Horovod is its master-worker communication structure. It is designed to operate
in “ticks”, each consisting in a series of operation requests to the master, followed by a done message. Such a
structure forces all communication to occur on a global scale, specifically, using MPI_COMM_WORLD as
the communicator for MPI messages. When designing custom pipelines, we need the ability to use MPI
collectives within a subset of ranks.

To solve this issue, we developed Horovod Groups [19]. This modification allows the user to provide a list of
groups that should be created upon initialization of the library. Whenever a collective tensor is created, a
group index must then be provided indicating which communicator to use for the operation. At present, there
are no known constraints on the memberships within these groups. For example, two groups need not be
mutually exclusive. A particular rank launches a background MPI thread for each group to which it belongs.
Communication can then occur asynchronously using multi-threaded MPI.

4.3 All-Shared

To share preprocessed data with all nodes, one possible approach is to make every node a preprocessor
(n = p), and share each node’s data with all other nodes. The MPI all-gather operation (see Figure 6) is well
suited to this purpose. We refer to this as the All-Shared (AS) pipeline, as depicted in Figure 7.

The primary benefit of this design is to maximally share all the preprocessing across all the compute nodes.
The limitation, however, is the lack of flexibility. For training more computationally heavy neural network
models, it seems unnecessary to require that every node instantiate a data reader and preprocessing stage,
when a small number of nodes could provide enough preprocessed data to training models. Our next two
designs attempt to take advantage of this fact, thereby increasing their flexibility.

10

Read D1 PreprocessNode 1 Train DNN 1

A
ll-

G
at

he
rRead D2 PreprocessNode 2 Train DNN 2

Train DNN nRead Dn PreprocessNode n

Figure 7. Illustration of the All-Shared (AS) pipeline. The dataset D is divided into n partitions for
each reader.

4.4 Single-Broadcast

We now wish to allow the number of preprocessors p to be adjustable. Suppose nodes 1, . . . , p are the
preprocessor nodes, and p + 1, . . . , n are nodes that only contain the GPU’s compute stage. Presumably
p < n, since if p = n we could use the All-Shared technique.

As a first step, we can perform an all-gather between the preprocessor nodes 1, . . . , p. Now each of these
nodes has access to all the data, but the remaining n − p nodes have none. One method to resolve this is to
elect node p to broadcast its data out to nodes p + 1, . . . , n. This process is shown in Figure 8, and we refer to
this pipeline as Single-Broadcast (SB).

The benefit of this pipeline is increased flexibility over AS. We can now control the value of p to adjust the
pipeline as necessary to our particular application. The primary downside to this design is potentially
degraded performance, since rank p now needs to perform two collective operations. Additionally, Horovod
Groups is needed for its custom MPI communicators.

4.5 Multi-Broadcast

Each node i in 1, . . . , p has its own data item Di. Instead of running an all-gather between preprocessors,
each i could broadcast its Di to all other nodes. In Multi-Broadcast, we avoid the initial all-gather by
performing asynchronous broadcasts from each preprocessor, as shown in Figure 9.

The benefit of this design is its evenly distributed approach. Each preprocessing node has identical work
without the extra demand placed on rank p by Single-Broadcast. However, it is limited in the number of
preprocessing nodes it can create efficiently, since each broadcast operation needs to occur within its own
thread.

11

Read D1 PreprocessNode 1 Train DNN 1

A
ll-

G
at

he
r

Read D2 PreprocessNode 2 Train DNN 2

Train DNN p+1

Node n

Train DNN pRead Dp PreprocessNode p

Node p+1

B
ro

ad
ca

st
 fr

om
 p

Train DNN n

Figure 8. Illustration of the Single-Broadcast (SB) pipeline. The dataset D is divided into p partitions
for each reader instead of n, since there are now p readers feeding their own preprocessor.

Read D1 PreprocessNode 1 Train DNN 1

Read D2 PreprocessNode 2 Train DNN 2

Train DNN p+1

Node n

Train DNN pRead Dp PreprocessNode p

Node p+1

Train DNN n

B
ro

ad
ca

st
 fr

om
 1

B
ro

ad
ca

st
 fr

om
 2

B
ro

ad
ca

st
 fr

om
 p

Figure 9. Illustration of the Multi-Broadcast (MB) pipeline. Similar to the Single-Broadcast design,
the dataset is divided into p partitions. Each Di for 1 ≤ i ≤ p is broadcasted to all nodes with the i’th
preprocessor node as the root.

12

5. Methods

In this section we introduce some of the metrics used to compare the baseline and our alternate pipeline
designs.

5.1 Peak Preprocessor Throughput

Previously we defined peak(n) as the function representing the maximum image throughput in a pipeline for
a given number of nodes n. The peak function is a good method to measure the scalability of a pipeline, and
provides the best mechanism for speed comparison to other pipelines.

While it is easy to think of peak(n) as a single function, it is actually defined by the throughput at each node
in the ensemble. However, it turns out that for a queuing system with finite size, the long term average
throughput for each node should be the same. Thus only one function is needed to define the entire pipeline’s
peak throughput.

Note that peak(n) is only a measure of preprocessing image throughput, and does not involve any DNN
training. In order to test the value of this function for a specific pipeline, we construct the compute queue that
stores batches ready to be trained, then we dequeue a batch. Repeating this operation quickly enough causes
the pipeline to reach peak image throughput.

The importance of measuring peak(n) is apparent when the compute throughput rc is also considered. As
mentioned before, we must have peak(n) ≥ rc in order to saturate GPU resources. Towards this end, we
additionally gather the value of rc for each DNN in our tests. To obtain rc, we calculate the average step
duration for a specific DNN, while also pausing between steps to allow all queuing systems to catch up. This
ensures that the GPU will have data ready to be dequeued when the next step is timed. By averaging the
seconds per step, we then invert and multiply by the batch size to obtain images per second, or rc.

5.2 CPU Usage

As a standard, it is important for the optimized version to run with at least the same training rate as the
baseline. However, it is not expected for the optimized pipeline to train DNNs faster than the baseline under
normal conditions. We previously established that it is possible for preprocessing to form a bottleneck, but
this is a more unusual case. If preprocessing is not a problem, our optimized pipeline should not increase the
training rate. In most of our tests, the GPU performance was the limiting factor. Recall that this may change
when Summit becomes available, since there are many more GPUs on the new node architecture. To measure
overall CPU load, we use the mpstat command to obtain CPU utilization statistics on each compute node in 4
second intervals. After training is complete, we integrate CPU utilization statistics over time to obtain CPU
usage for the job.

The long term averages are identical simply due to the nature of the collective communication. All nodes in the pipeline receive
all data. If node a gets ahead of node b in its computation, the images that b has not processed must be within a queue after the
collective communication. Since these queues have finite size, the difference in progress between a and b must be less than this
constant. Thus the long term average throughput must be the same.

13

Table 2. Average core usage when using simulated 3 core allocation on a Titan node.

Core ID Avg % Util Core ID Avg % Util

0 94.0181 8 0.0040

1 96.4045 9 0.0080

2 94.5611 10 0.0040

3 0.0436 11 0.0040

4 0.3789 12 0.1432

5 0.0080 13 0.0040

6 0.6070 14 0.0040

7 0.0079 15 0.1352

5.3 Core Usage Limits

Another useful metric is the runtime of the training process when a CPU core limit is imposed. Some cluster
systems allow nodes to be shared by users who have requested few CPU cores for their job. The charge
allocated to the user’s account for such a job is typically only charged for the number of cores allocated. In
such a case, there is a clear benefit to allocating less cores if the job does not need them. We can therefore
test our pipeline by first imposing limits on the number of cores used, and then compare the overall runtime
to the baseline under the same limits. Since Titan does not support node sharing nor partial core allocation,
we simulate a limited CPU environment by controlling the number of threads allocated to each MPI rank.
Since each rank is allowed to use an entire node, the number of threads corresponds to the number of CPU
cores allowed. Table 2 shows the average core usage when simulating 3 cores allocated on a single Titan
node and training Alexnet on a basic pipeline.

5.4 Energy Usage

A secondary benefit from decreased CPU usage is power savings. On Titan, we collect energy consumption
data through 2 metered cabinets. One limitation of these cabinets is that they only record the consumption of
the entire cabinet, so distinguishing between the power usage of different devices within the cabinet is
impossible. Thus the results we report are the power consumption of all devices in the cabinet, not just the
CPU. In order to eliminate possible power variances due to jobs executing on different systems, we reserved
only one cabinet for all jobs. We submit each ensemble training job sequentially, with approximately 2
minute breaks between the job’s end and the next launch. We record measurements from two runs for each
type of job.

14

0 50 100 150
nodes (n)

0

100

200

300

400

500

600

700

800

im
ag

e/
se

c

Alexnet

Inception V1
VGG-A

All-Shared
SB-npre=5
SB-npre=20
MB-npre=5
MB-npre=20

(a) Full 16-core testing up to 150 nodes.

0 10 20 30 40 50
nodes (n)

0

100

200

300

400

500

600

700

800

im
ag

e/
se

c

Alexnet

Inception V1

VGG-A

All-Shared
SB-npre=5
SB-npre=20
MB-npre=5
MB-npre=20

(b) Partial 4-core test up to 50 nodes.

Figure 10. Illustration of peak(n) for each pipeline. The number of preprocessors is changed between
5 and 20 when supported by the pipeline. The horizontal lines indicate the measured compute demand
of a GPU on Titan.

15

0 10 20 30 40 50
nodes

0

0.5

1

1.5

2

2.5

3

3.5

C
PU

 u
sa

ge
 (

no
rm

al
iz

ed
 to

 A
S)

SB
MB

Figure 11. CPU usage for SB and MB on Alexnet normalized to the CPU usage for AS.

0 10 20 30 40 50
nodes

1

3

5

7

9

11

C
PU

 R
ed

uc
tio

n

Alexnet
Inception V1
VGG-A

Figure 12. CPU usage reduction for the All-Shared pipeline compared to the baseline. Each
network/n combination was trained over 1000 steps.

16

1 2 4 8 12 16
cores

1

3

5

7

9

11

Sp
ee

du
p

Alexnet
Inception V1
VGG-A

Figure 13. Runtime improvement of AS over the baseline when CPU-core limits are imposed. The
ensemble contained 100 networks, each trained over 1000 steps.

17

6. Results

6.1 Peak Throughput

In order to effectively compare each pipeline to find the best, we first observe differences in peak throughput
of the preprocessing stage, or peak(n). Recall that this function is a measure of the steady state image
throughput for the preprocessing stage, and does not include any DNN training.

Figure 10a shows the value of peak(n) for n <= 150 for increments of 5 nodes. Since the SB and MB
pipelines each also need p preprocessors, technically we need to illustrate peak(n, p). For simplicity, the
figure shows peak(n, 5) and peak(n, 20). We observe that changing the number of preprocessors between 5
and 20 does little to affect the throughput as n increases. Furthermore, the SB and MB pipelines are
incapable of saturating Alexnet, since they drop below its rc line. Despite their poor performance, they still
provide a viable mechanism to train larger networks, as both Inception and VGG are well within their
compute demands.

In order to clarify this data when core usage is restricted, Figure 10b shows peak(n) for up to 50 nodes. The
performance for SB and MB is markedly decreased, while AS remains unchanged. This confirms that AS is
better in terms of peak throughput for both full-core and partial core training.

For SB and MB, these results point towards the broadcast operation as a performance problem. As n
increases while p remains constant, the broadcast size also increases. This correlates to the slow decrease in
throughput seen in Figure 10.

As a final test for the broadcasting pipelines, we compare the CPU usage for AS, SB, and MB in Figure 11.
We vary the number of nodes in the ensemble between 10 and 50 and normalize the resulting CPU usage to
the AS pipeline. The SB pipeline uses marginally more CPU than AS, while MB uses far more. This
indicates that both of these pipelines are inferior to AS in both preprocessor throughput and CPU usage.
Thus, our next series of tests are only performed on AS.

6.2 CPU

Figure 12 shows the reduced CPU usage provided by the AS pipeline. We see that the usage is reduced by up
to 10.8X, 3.5X, and 2.4X for Alexnet, Inception, and VGG, respectively. We observe that the reduction is
inversely proportional to the compute demand of the network, as shown by the dotted lines in Figure 10. The
compute demand is the primary indicator of how much CPU time is needed to preprocess data for the GPU.
Higher demanding networks like Alexnet will cause the preprocessing stage to use much more CPU, while
Inception and VGG will use less. Thus we see smaller reductions for larger/slower networks.

Aside from measuring CPU usage reduction, we also test training time when CPU limits are imposed.
Figure 13 shows the speedup that AS provides when both AS and the baseline are subjected to core
restrictions. Recall that each Titan node has a 16 core CPU.

Alexnet sees a speedup of up to 10X for 1 core allocation on the AS pipeline. To understand this, Table 3
provides information on how each pipeline slows down under core limitations. From this table, we see that

The number of MPI threads per rank is controlled by the -d option passed to the aprun command.
Each of these cabinets includes 96 nodes, 8 of which are service nodes, leaving a total of 88 nodes for user jobs.

18

Table 3. Slowdowns under a 1-core limitation, measured relative to the 16-core performance of the
same DNN and pipeline.

Pipeline DNN 1-core slowdown

Alexnet 9.61X

Baseline Inception 3.49X

VGG 1.83X

Alexnet 1.54X

All-Shared Inception 1.06

VGG 1.02X

Table 4. The minimum energy usage for one of Titan’s metered cabinets, averaged over 45 minutes of
idle time with 1-second interval sampling.

Minimum power Variance Max observed power

18.985KW 5.355 × 10−4 32.767KW

Alexnet’s speedup is due primarily to the dramatic slowdown that the baseline incurs (9.6X) from this
limitation, since it relies on additional CPU power to preprocess data. In contrast, the AS pipeline only incurs
a 54% slowdown due to the severe core limitation. While the AS pipeline’s large number of individual
processor cores should in theory be able to handle the necessary preprocessing, having only 1 core limits
other systems as well from executing efficiently, thus causing the slowdown. However, the AS pipeline is
able to train Inception and VGG on 1 core incurring only a 6% and 2% slowdown, respectively. Since less
preprocessing is needed for these networks, less competition for CPU resources is present, allowing
near-full-speed training. As with the CPU-reduction results, the potential speedups under core limitations is
inversely proportional to the size of the DNN being trained. To reiterate, this is simply because larger
networks need less CPU for preprocessing since they train slowly.

6.3 Energy Consumption

As seen in Table 4, the minimum energy for the Titan metered cabinet was found to be roughly 19KW, while
the maximum energy observed for the most intensive job was 32.767KW. Since the idling power is a
significant 58% of the maximum power, savings will be reported based on the relative increase above the
idling power.

Figure 14 shows the power consumption of the AS pipeline compared to the baseline when training 80 nodes
of Alexnet. Since the baseline suffers from performance issues in its preprocessing, it takes more time to
train its DNNs, and this is reflected in the figure.

Table 5 shows the average energy consumption in Kilo-Watts (KW) during training for Alexnet, Inception,
and VGG on the baseline and AS pipelines. The energy demand for AS over the idle usage was 4.5%-15.8%
less than for the baseline.

19

0 200 400 600 800 1000 1200

time (sec)

0

2

4

6

8

10

12

14
K

W
 (

w
ith

ou
t i

dl
e

po
w

er
) Baseline

All-Shared

Figure 14. Power draw comparison between AS and the baseline running 80 nodes of Alexnet.

Table 5. Average energy consumption during training for each of AS and the baseline on Alexnet,
Inception, and VGG.

Pipeline DNN KW KW (without idle) Savings %

Alexnet 32.745 13.760

Baseline Inception 31.318 12.333

VGG 31.509 12.524

Alexnet 30.576 11.591 15.8%

All-Shared Inception 30.084 11.099 10.0%

VGG 30.940 11.955 4.5%

20

7. Related Work

Recent work has tried to increase the scalability of machine learning algorithms in distributed environments.
When discussing scalability, it is important to distinguish between a single network vs. many networks in
distributed environments.

Much research is being done to accelerate the training of larger networks over distributed systems. Google’s
DistBelief framework [11] is an example of this, as it provides a way to scale very large networks over
potentially thousands of nodes. Li et al. [16] create a framework that maintains a set of global parameters
while distributing data and workloads to a set of worker nodes. More recent work in this area has focused on
specific cluster architectures and algorithms. Chung et al. [9] create an implementation of a data-parallel
training algorithm that is designed specifically to scale well on a large number of loosely connected
processors. They test their implementation on the IBM Blue Gene/Q cluster and find linear performance
scaling up to 4096 processes with no accuracy loss.

Among these studies, Kurth et al. [15] is the most closely related to this study, where the authors considered
DNN training in high performance computing environments. However, this study was performed on a cluster
of Xeon-Phi processors, while our work used a large scale GPU cluster. In addition, Kurth et al. [15] focused
on various communication methods in the context of model parameter updates during the training process.
The study also considered various communication methods in distributing training data, including
preprocessing and I/O from the storage systems, in the context of machine learning pipelines.

Research has also made strides in accelerating networks designed to fit on a single device. Yu et al. [24] take
a hardware-oriented approach by customizing weight pruning to fit the underlying hardware being used.
They note that hardware devices such as microcontrollers, CPUs, and GPUs have different execution patterns
that are most efficient. They take advantage of this by carefully choosing when to prune out nodes or weights
from the network. This results in 1.25-3.54X speedups depending on the hardware used.

Little work has been performed in the area of ensemble DNN training, as most researchers have focused on
training a large DNN in distributed environments. However, Microsoft researchers have produced a tool
called Adam [7] that has goals similar to [16] and partially relates to our work. Again, the tool primarily
deals with accelerating larger networks over distributed nodes, but their pipeline has some elements in
common with our current work. They mention concerns with heavy preprocessing tasks caused by complex
image transformations. They similarly offload these tasks to a set of nodes dedicated to queuing preprocessed
data to feed worker nodes more efficiently. Nevertheless, their work optimizes the training of a single DNN
over multiple CPU-based machines. As GPU-based distributed systems can train similar models with much
smaller cluster configuration than CPU-based systems [10], this study focuses on the potential gains from
more efficient pipelines for multi-DNN systems in distributed GPU environments.

8. Conclusion

This research investigated the performance properties of DNN ensemble pipelines. We modified the Horovod
library to provide additional communication flexibility to Tensorflow that is not present in other Deep
Learning frameworks. Leveraging this tool, we developed a series of pipelines which eliminated redundant

Weight pruning involves analyzing a network during the training process to see if any of the network’s nodes or weights are
redundant or useless. Pruning can result in smaller memory footprint and faster training, but can also potentially reduce accuracy.

21

preprocessing operations. The best of these was selected based upon its ability to supply the most
preprocessed data while requiring minimal CPU resources.

The All-Shared pipeline was able to reduce CPU usage by 2-11X when more than 5 nodes were present in
the ensemble, while providing nearly twice the throughput that Alexnet demanded. Under CPU core
restrictions, the AS pipeline was able to achieve up to 10X speedups over the baseline. Lastly, this pipeline
uses 5-16% less energy on Titan than our baseline used.

The primary limitation of this work is the assumption that DNNs in the ensemble behave similar to one other,
with respect to both the training rate and prediction accuracy. In the future, a more in-depth study on the
communication methods with CUDA-enabled MPI will be an interesting direction to pursue. We envision
that this research will align with the broader goal of creating an adaptive machine learning pipeline that
provides portable performance across system architectures.

References

[1] Titan specs: https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/.

[2] Summit specs: https://www.olcf.ornl.gov/summit/.

[3] Distributed Tensorflow: https://www.tensorflow.org/deploy/distributed.

[4] Project source code. (Omitted due to double-blind review).

[5] Tensorflow-slim. https://github.com/tensorflow/models/tree/master/research/slim.

[6] A Bland, W Joubert, D Maxwell, N Podhorszki, J Rogers, G Shipman, and A Tharrington. Titan:
20-petaflop cray xk6 at oak ridge national laboratory. Contemporary High Performance Computing:
From Petascale Toward Exascale, CRC Computational Science Series. Taylor and Francis, 2013.

[7] Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. Project adam:
Building an efficient and scalable deep learning training system. In OSDI, volume 14, pages 571–582,
2014.

[8] Keunwoo Choi, George Fazekas, Kyunghyun Cho, and Mark Sandler. A comparison on audio signal
preprocessing methods for deep neural networks on music tagging. arXiv preprint arXiv:1709.01922,
2017.

[9] I-Hsin Chung, Tara N Sainath, Bhuvana Ramabhadran, Michael Picheny, John Gunnels, Vernon Austel,
Upendra Chauhari, and Brian Kingsbury. Parallel deep neural network training for big data on blue
gene/q. IEEE Transactions on Parallel and Distributed Systems, 28(6):1703–1714, 2017.

[10] Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro, and Ng Andrew. Deep learning
with cots hpc systems. In International Conference on Machine Learning, pages 1337–1345, 2013.

[11] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior, Paul
Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In Advances in neural
information processing systems, pages 1223–1231, 2012.

[12] Davide Figo, Pedro C Diniz, Diogo R Ferreira, and João M Cardoso. Preprocessing techniques for

22

https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
https://www.olcf.ornl.gov/summit/
https://www.tensorflow.org/deploy/distributed
https://github.com/tensorflow/models/tree/master/research/slim

context recognition from accelerometer data. Personal and Ubiquitous Computing, 14(7):645–662,
2010.

[13] Suyog Gupta, Wei Zhang, and Fei Wang. Model accuracy and runtime tradeoff in distributed deep
learning: A systematic study. In Data Mining (ICDM), 2016 IEEE 16th International Conference on,
pages 171–180. IEEE, 2016.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran Associates, Inc.,
2012.

[15] Thorsten Kurth, Jian Zhang, Nadathur Satish, Evan Racah, Ioannis Mitliagkas, Md Mostofa Ali Patwary,
Tareq Malas, Narayanan Sundaram, Wahid Bhimji, Mikhail Smorkalov, et al. Deep learning at 15pf:
supervised and semi-supervised classification for scientific data. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, page 7. ACM, 2017.

[16] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski, James
Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the parameter
server. In OSDI, volume 1, page 3, 2014.

[17] Jimmy Lin and Alek Kolcz. Large-scale machine learning at twitter. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, pages 793–804. ACM, 2012.

[18] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S Vetter. Nvidia tensor
core programmability, performance & precision. arXiv preprint arXiv:1803.04014, 2018.

[19] Anonymous (omitted due to double-blind review). Horovod groups, 2018.

[20] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2012.

[21] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in
TensorFlow. arXiv preprint arXiv:1802.05799, 2018.

[22] Bin Wang, Bo Wu, Dong Li, Xipeng Shen, Weikuan Yu, Yizheng Jiao, and Jeffrey S Vetter. Exploring
hybrid memory for gpu energy efficiency through software-hardware co-design. In Proceedings of the
22nd international conference on Parallel architectures and compilation techniques, pages 93–102.
IEEE Press, 2013.

[23] Steven R Young, Derek C Rose, Thomas P Karnowski, Seung-Hwan Lim, and Robert M Patton.
Optimizing deep learning hyper-parameters through an evolutionary algorithm. In Proceedings of the
Workshop on Machine Learning in High-Performance Computing Environments, page 4. ACM, 2015.

[24] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna Das, and Scott Mahlke.
Scalpel: Customizing dnn pruning to the underlying hardware parallelism. In Proceedings of the 44th
Annual International Symposium on Computer Architecture, pages 548–560. ACM, 2017.

[25] Eddy Z Zhang, Yunlian Jiang, Ziyu Guo, and Xipeng Shen. Streamlining gpu applications on the fly:

23

thread divergence elimination through runtime thread-data remapping. In Proceedings of the 24th ACM
International Conference on Supercomputing, pages 115–126. ACM, 2010.

24

APPENDIX A. Artifact Description

In this section we provide a rough outline of our code-base deployment procedure, as well as some of the
details of implementation that could affect the reproducibility of the project.

Code Sources and Dependencies

There are two main code repositories for the project. The primary code scripts for Tensorflow are contained
in [4]. In order to run Single-Broadcast or Multi-Broadcast pipelines, Horovod Groups [19] is needed. For
the All-Shared pipeline, Horovod is needed. To swap out these Horovod installations, modify your
PYTHONPATH to include the correct installation directory depending on the pipeline being used.

Horovod Groups requires that the MPI installation can run in multi-threaded mode. That is, it initializes MPI
using MPI_Init_thread, and requests MPI_THREAD_MULTIPLE for its thread support. In order to run tests
with the SB and MB pipelines using Horovod Groups, you will need to verify that your system supports
multi-threaded MPI.

Our Python code calls several system commands, including the mkdir, date, and mpstat commands. These
are used for log directory creation for various ranks, timestamp retrieval (for the energy tests), and CPU
usage statistics. These commands will need to be installed on the system.

Our cluster job scripts all use the .pbs extension. These scripts are specific to our system/directory
configuration on Titan, and cannot be used in other locations. Since each cluster has its own method for
running various MPI/Tensorflow code, you will need to construct a new set of job scripts for your cluster.

Note that our implementation on Titan used a Singularity installation of Tensorflow, through the
recommendation of OLCF staff. Therefore, many of our job scripts contain singularity command wrappers.
Additionally, the Titan compute nodes and default Tensorflow Singularity image do not feature the mpstat
command. Thus, we built our own Singularity image to include this command.

Compilation

The only compilation needed for this project is Horovod and Horovod Groups, which can both be built using
the same commands. Since no Tensorflow modifications were made for this project, your own installation of
Tensorflow should work. Note that since Tensorflow is rapidly changing, it is quite possible that installations
newer than 1.3.0 will have unexpected errors.

Reproducibility

Preprocessing Throughput Tests

We ran a series of tests on the capabilities of each pipeline, measuring what we refer to in this paper as the
peak(n) function for the pipeline. Depending on your MPI installation and particularly on your cluster’s
network architecture, you will likely see differences in each pipelines overall performance. However, we do
expect that the relationships between AS, MB, and SB will remain the same.

Multi-Core CPU Tests

This work relies heavily on multi-core Tensorflow execution. It will be important to ensure that your
MPI/cluster configuration will allow MPI ranks to use multiple CPU cores.

Our various CPU tests also rely on the ability of the system to restrict core usage. This might be
accomplished by reserving only a subset of the CPU cores within your cluster, but this was not possible on
Titan since users can only reserve entire compute nodes. We used the -d flag to limit the number of cores
MPI ranks could use for our tests. Whatever the means, reproducing the CPU core limitations tests will
require this capability.

The Slim module by default includes some preprocessing capabilities. This module also provides a
fast_mode flag for preprocessing. If this flag is true, the module will select a random resizing algorithm to
shrink the raw input image to the correct DNN dimensions. Some of these algorithms are more costly than
others. We left fast_mode disabled to provide the best preprocessing capabilities for DNN training. This
also increases CPU usage, and is therefore important to more precisely reproduce our results.

The largest speedup reported in this paper is about 10X for Alexnet. This value depends on the cluster’s
individual GPU and CPU performance. On Titan, we observed that the 16-core CPU is not able to keep up
with the GPU for the Alexnet DNN, experiencing a 34% slower training speed than the GPU can handle. A
system with higher CPU to GPU power would see less performance degradation, and thus the reported 10X
speedup would be less. However, a system with more GPU power would see higher CPU usage and slower
training due to preprocessing, resulting in greater speeups. Overall, the CPU to GPU power ratio will be
different for your system, and will likely produce different speedups. Nevertheless, we expect that the AS
pipeline will typically be capable of producing speedups for the 1-2 core case.

Energy Tests

Our energy tests required extended communication and assistance from OLCF staff. For our tests, we
ensured that the 80-node job allocations were sent to only 1 metered cabinet. Our reported Kilo-Watt values
are for the entire cabinet, which contained 96 nodes. Since we discovered a significant 58% idle power usage
for this cabinet, we decided to factor this out of our savings reports. Thus, in order to get an accurate
reproduction of these results, the idle power consumption for your testing system will need to be obtained.

A-4

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT
	Introduction
	Backgrounds
	Deep Neural Network Training Pipeline
	Heterogeneous GPU-CPU cluster for DNN training pipeline

	Ensemble Performance
	Duplicated Pipelines and the Implementation
	Settings for Testing
	Workloads
	Datasets

	Baseline
	Single Node
	Multiple Nodes

	Optimized Pipelines
	Problem statement
	Horovod groups
	All-Shared
	Single-Broadcast
	Multi-Broadcast

	Methods
	Peak Preprocessor Throughput
	CPU Usage
	Core Usage Limits
	Energy Usage

	Results
	Peak Throughput
	CPU
	Energy Consumption

	Related Work
	Conclusion
	APPENDIX A. Artifact Description

